3.471 \(\int \frac{x^2}{(d+e x) \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=195 \[ -\frac{\left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 c^{3/2} d^{3/2} e^{5/2}}+\frac{2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^2 (d+e x) \left (c d^2-a e^2\right )}+\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d e^2} \]

[Out]

Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(c*d*e^2) + (2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e
^2*(c*d^2 - a*e^2)*(d + e*x)) - ((3*c*d^2 + a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt
[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*c^(3/2)*d^(3/2)*e^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.346458, antiderivative size = 195, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {1638, 792, 621, 206} \[ -\frac{\left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 c^{3/2} d^{3/2} e^{5/2}}+\frac{2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^2 (d+e x) \left (c d^2-a e^2\right )}+\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d e^2} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(c*d*e^2) + (2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e
^2*(c*d^2 - a*e^2)*(d + e*x)) - ((3*c*d^2 + a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt
[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*c^(3/2)*d^(3/2)*e^(5/2))

Rule 1638

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq
, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + b*x + c*x^2)^(p + 1))/(c*e^(q - 1)*(
m + q + 2*p + 1)), x] + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^
q*(m + q + 2*p + 1)*Pq - c*f*(m + q + 2*p + 1)*(d + e*x)^q + e*f*(m + p + q)*(d + e*x)^(q - 2)*(b*d - 2*a*e +
(2*c*d - b*e)*x), x], x], x] /; NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] &&
 NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{(d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d e^2}+\frac{\int \frac{-\frac{1}{2} d e \left (c d^2+a e^2\right )-\frac{1}{2} e^2 \left (3 c d^2+a e^2\right ) x}{(d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d e^3}\\ &=\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d e^2}+\frac{2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^2 \left (c d^2-a e^2\right ) (d+e x)}-\frac{1}{2} \left (\frac{a}{c d}+\frac{3 d}{e^2}\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d e^2}+\frac{2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^2 \left (c d^2-a e^2\right ) (d+e x)}-\left (\frac{a}{c d}+\frac{3 d}{e^2}\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d e^2}+\frac{2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^2 \left (c d^2-a e^2\right ) (d+e x)}-\frac{\left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 c^{3/2} d^{3/2} e^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.377895, size = 255, normalized size = 1.31 \[ \frac{c^{3/2} d^{3/2} \sqrt{e} \left (-a^2 e^3 (d+e x)+a c d e \left (3 d^2-e^2 x^2\right )+c^2 d^3 x (3 d+e x)\right )-\sqrt{c d} \sqrt{c d^2-a e^2} \left (-a^2 e^4-2 a c d^2 e^2+3 c^2 d^4\right ) \sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{c^{5/2} d^{5/2} e^{5/2} \left (c d^2-a e^2\right ) \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(c^(3/2)*d^(3/2)*Sqrt[e]*(-(a^2*e^3*(d + e*x)) + c^2*d^3*x*(3*d + e*x) + a*c*d*e*(3*d^2 - e^2*x^2)) - Sqrt[c*d
]*Sqrt[c*d^2 - a*e^2]*(3*c^2*d^4 - 2*a*c*d^2*e^2 - a^2*e^4)*Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*
e^2)]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(c^(5/2)*d^(5/2)*e
^(5/2)*(c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.059, size = 241, normalized size = 1.2 \begin{align*}{\frac{1}{d{e}^{2}c}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{a}{2\,cd}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}-{\frac{3\,d}{2\,{e}^{2}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}-2\,{\frac{{d}^{2}}{{e}^{3} \left ( a{e}^{2}-c{d}^{2} \right ) }\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \left ({\frac{d}{e}}+x \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/e^2/c-1/2/d/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+
(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a-3/2/e^2*d*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)-2*d^2/e^3/(a*e^2-c*d^2)/(d/e+x)*(c*d*e*(d/e+x)^2+(a*e^2-c*
d^2)*(d/e+x))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.6423, size = 1195, normalized size = 6.13 \begin{align*} \left [\frac{{\left (3 \, c^{2} d^{5} - 2 \, a c d^{3} e^{2} - a^{2} d e^{4} +{\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} x\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \,{\left (3 \, c^{2} d^{4} e - a c d^{2} e^{3} +{\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{4 \,{\left (c^{3} d^{5} e^{3} - a c^{2} d^{3} e^{5} +{\left (c^{3} d^{4} e^{4} - a c^{2} d^{2} e^{6}\right )} x\right )}}, \frac{{\left (3 \, c^{2} d^{5} - 2 \, a c d^{3} e^{2} - a^{2} d e^{4} +{\left (3 \, c^{2} d^{4} e - 2 \, a c d^{2} e^{3} - a^{2} e^{5}\right )} x\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \,{\left (3 \, c^{2} d^{4} e - a c d^{2} e^{3} +{\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{2 \,{\left (c^{3} d^{5} e^{3} - a c^{2} d^{3} e^{5} +{\left (c^{3} d^{4} e^{4} - a c^{2} d^{2} e^{6}\right )} x\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((3*c^2*d^5 - 2*a*c*d^3*e^2 - a^2*d*e^4 + (3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*x)*sqrt(c*d*e)*log(8*c^
2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x +
 c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(3*c^2*d^4*e - a*c*d^2*e^3 + (c^2*d^3*e^2 - a*c
*d*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^5*e^3 - a*c^2*d^3*e^5 + (c^3*d^4*e^4 - a*c^2*d^
2*e^6)*x), 1/2*((3*c^2*d^5 - 2*a*c*d^3*e^2 - a^2*d*e^4 + (3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*x)*sqrt(-c*d*
e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^
2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(3*c^2*d^4*e - a*c*d^2*e^3 + (c^2*d^3*e^2 - a*c*d*e^4)*x
)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^5*e^3 - a*c^2*d^3*e^5 + (c^3*d^4*e^4 - a*c^2*d^2*e^6)*x)
]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(x**2/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError